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Abstract. Age-related cognitive decline and neurodegenerative diseases are a growing challenge for society. Accumulation of
tau pathology has been proposed to partially contribute to these impairments. This study provides a behavioral characterization
during aging of transgenic mice bearing tau mutations. THY-Tau22 mice were evaluated at ages wherein tau neuropathology in
this transgenic mouse model is low (3-4 months), moderate (6-7 months), or extensive (>9 months). Spatial memory was found
to be impaired only after 9 months of age in THY-Tau22 mice, whereas non-spatial memory was affected as early as 6 months,
appearing to offer an opportunity for assessing potential therapeutic agents in attenuating or preventing tauopathies through
modulation of tau kinetics.

Keywords: aging, learning, memory, tauopathy, transgenic model

INTRODUCTION

Tauopathies, characterized by the dysfunction and
aggregation of the microtubule-associated protein tau,
represent some of the most devastating neurode-
generative disorders afflicting the elderly, including
Alzheimer’s disease (AD), progressive supranuclear
palsy, corticobasal degeneration, Pick’s disease, and
frontotemporal dementia with parkinsonism linked to
chromosome 17 (FTDP-17) [1, 2].

Generation of transgenic mouse models expressing
human tau in the brain has contributed to the under-
standing of the pathomechanistic role of tau in disease.
In many models, however, the temporal pattern of cog-
nitive decline has not been described [3]. This is of
importance for pharmaceutical treatment, since know-
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ing the phenotypes at each age is essential for setting
up appropriate drug designs [4]. It is of particular con-
cern to identify age-dependent phenotypes to relate
behavioral anomalies to biologic markers appearing
at different stages.

Even though tau pathology has been studied in AD
and other tauopathies for many years, the direct sig-
nificance of neurofibrillary tangle accumulation for
neuronal and cognitive function is still unclear. Pre-
viously it was shown that animals with mutations in
the amyloid-! protein precursor and presenilin display
progressive, age-related behavioral impairments [5–7].

Because of these considerations, we evaluated sev-
eral series of THY-Tau22 mice from 3 to 10 months
of age. A cross-sectional design was used to avoid
the possible influence of multiple testing on individ-
ual animals. THY-Tau22 mice overexpress mutated
human tau, develop tau aggregates, coinciding with
impaired hippocampus-dependent learning and mem-
ory, and attenuated late-phase long-term depression of
synaptic transmission [8–10].
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Here we report that this animal model displays a
wide spectrum of features characteristic to tauopathy
and AD in an age-dependent manner: 3-4 month-
old THY-Tau22 mice with early-stage tau pathology
are unaffected behaviorally. Concurrent with the
progressive tau pathology in the CA1, 6-7 month-
old THY-Tau22 mice develop learning and memory
deficits in behavioral tasks that are associated with hip-
pocampal function, precisely the brain region affected
by tau pathology.

MATERIALS AND METHODS

Animals

Heterozygous THY-Tau22 transgenic mice were
compared with their wild-type (WT) littermates. Only
males were used in these experiments. The tau mice
overexpress mutated hTau under the control of a
Thy1.2 promotor displaying tau pathology in the
absence of any motor dysfunction [8]. The vector was
injected into a C57BL6/CBA background and back-
crossed to C57BL6. The progeny was genotyped using
PCR on DNA isolated from tail biopsy. THY-Tau22
mice show no hearing loss or different sensitivity to
thermal nociceptive stimulation up to 11 months [9,
10].

Experimental design

Mice were divided into the following age groups,
each consisting of 12 THY-Tau22 and 12 WT mice:
3-4 months, 6-7 months, and 9-10 months. Mice were
tested cross-sectionally in the following experimen-
tal sequence: behavior, biochemistry, and histology.
For each of the age groups, the complete sequence of
behavioral tests required approximately 3 weeks and
consisted of the following tasks in the sequence: classic
Morris water maze test, probe test, social transmission
of food preference, and contextual fear conditioning.
All animals were kept in standard animal cages under
conventional laboratory conditions (12 h/12 h light-
dark cycle, 22◦C), with ad libitum access to food
and water (unless stated otherwise). Behavioral exper-
iments were conducted during the light phase of their
activity cycle.

Behavior

Morris water maze
Spatial memory abilities were examined in the stan-

dard hidden-platform acquisition and retention version

of the water maze [11]. A 150-cm circular pool was
filled with water, opacified with non-toxic white paint,
and kept at 26◦C as previously described [12, 13]. A
15-cm round platform was hidden 1 cm beneath the
surface of the water at a fixed position. Four positions
around the edge of the tank were arbitrarily desig-
nated 1, 2, 3, and 4; thus dividing the tank into four
quadrants (clockwise): target, adjacent 1, opposite, and
adjacent 2. Each mouse was given four swimming
trials per day (10 min intertrial interval) for five con-
secutive days. The start position (1, 2, 3, or 4) was
pseudo-randomized across trials. Mice that failed to
find the submerged platform within 2 min were guided
to the platform, where they remained for 15 s before
being returned to their cages. Escape latency (s), path
length (cm), velocity (cm/s), and search patterns of the
mice were tracked using the Ethovision video tracking
system (Noldus Information Technology, Wageningen,
The Netherlands).

Acquisition trials were further analyzed to identify
differential search strategies [14–19]. Table 1 sum-
marizes the eight different search strategies that were
scored in these analyses. Such strategies ranged from
proper spatial strategies to those that involved system-
atic scanning of the pool without actually relying on
spatial information (non-spatial strategies), or those
that merely consisted of repetitive loopings.

To evaluate retention memory, probe trials were pre-
sented 2 days after the last acquisition day. During
these probe trials, the platform was removed, and the
swimming path was recorded during 100 s. Time spent
in each quadrant was measured. We also visualized
these swimming paths using a custom-made MATLAB
protocol. Briefly, swimming paths of individual mice
were placed on top of each other to create heat plots
for every group. Color intensities (from blue to red)
indicated relative presence in specific areas of the pool.

Social transmission of food preference task
In this task, an animal is evaluated on its ability to

learn about the safety of food from its conspecifics
[20]. The select-reject decision process involves an
evaluation of the sensory characteristics of the food-
stuff, particularly its flavor. Two days prior to the
experiment all mice were food deprived. On the third
day, four ‘demonstrator’ mice were allowed to eat
food containing a novel odor (paprika or celery) for
2 h. Immediately after, during a 2-h social encounter,
demonstrators were able to exchange information
about the food odor with the observer mice. The odor-
reward pairing was equally counterbalanced among
groups. Finally, 24 h after the interaction, the observers
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Table 1
Summary of different search strategies mice can use to locate the hidden platform in the Morris water maze. These can be broadly classified as

spatial, non-spatial or repetitive looping

Main search strategy Specific search strategy Description search strategy

Spatial Spatial direct Mice swim to the platform in a straight line
Spatial indirect Mice swim to the platform with one small explorative loop
Focal correct Mice search for the platform in the correct quadrant

Non-spatial Focal incorrect Mice search for the platform in the wrong quadrant
Scanning Mice search for the platform in the center of the pool
Random Mice do not show preference to any part of the pool

Repetitive looping Chaining Mice search in the target annulus area
Thigmotaxis Mice display predontinant wall hugging behavior

were given a preference test for the cued food odor ver-
sus another new food odor. Each observer was placed
individually in a cage with two weighed cups of food
containing the alternative scented foods, and allowed to
eat for 2 h. The amount of grams eaten from both food
cups was determined by weighing the remaining food.

Contextual fear conditioning
The test chamber (26 × 22 × 18 cm high) of the con-

textual fear conditioning experiment [21]. was made of
clear Plexiglas, and the grid floor was used to deliver an
electric shock using a constant current shocker (MED
Associates Inc., St. Albans, Vermont, USA). The test
chamber was placed inside a sound attenuated cham-
ber. The experiment consisted of 3 days. On the first
day, animals were placed in the testing chamber and
were allowed to acclimate for 5 min. On the second
day, animals were again placed in the testing cham-
ber and after 2 min of exploration (baseline score),
a buzzer was sounded for 30 s. This auditory stimu-
lus, the conditional stimulus, was followed by a 2-s
foot shock (0.3 mA), the unconditional stimulus. After
the shock, mice were allowed to explore once more
for 1 min before they received a second conditional-
unconditional stimulus pairing. Finally, they were
allowed to explore for another minute. Twenty-four
h later, on the third and last day, the animals were
placed in the same context for 5 min exploration (con-
text score). After 90 min, the mouse was again placed
in the test chamber. Environmental and contextual cues
were changed: a white paper square insert was placed
in the chamber to alter its color, and mint extract was
used to alter the smell. After 3 min of free exploration
(pre-conditional stimulus score), the auditory stimulus
was delivered for 3 min (conditional stimulus score).
Freezing behavior was recorded every 10 s.

Biochemistry and histology

After completion of the behavioral experiments, ani-
mals were killed and brains removed. Half of the brains

were processed for biochemical studies, and the sec-
ond half for histology. For biochemistry, hippocampi
were dissected out using a coronal acrylic slicer (Delta
Microscopies) at 4◦C and stored at −80◦C until use.
Tissue was homogenized as described previously [8,
9]. For western blot analysis, samples were diluted in
NuPage sample buffer (Invitrogen) and denaturated at
100◦C for 5 min. Then, 15 !g of proteins were loaded
on 4–12% NuPage Novex gels, and transferred to nitro-
cellulose or polyvinylidene fluoride membranes and
incubated with appropriate antibodies. Signals were
visualized by chemiluminescence (ECL; GE Health-
care). For histology, brains were fixed for 7 days in
4% paraformaldehyde, then incubated in 20% sucrose
for 24 h and kept frozen until use. Free-floating coronal
sections (40 !m) were obtained using a cryostat (Leica
Microsystems). Sections of interest were used for free
floating immunohistochemistry using tau antibodies as
previously described [8, 9].

Statistics

The behavioral performance of THY-Tau22 trans-
genic mice and non-transgenic WTs was initially
evaluated for the three behavioral time points sep-
arately. This allowed determination of whether
progressive behavioral impairment was shown by
transgenic mice—namely, that transgenic mice dif-
fered from WTs at the later, but not the earlier time
points. All behavioral comparisons were done by
means of analysis of variance (ANOVA). As a sec-
ond determination of whether progressive behavioral
changes had occurred in transgenic mice between the
three time points, performance of transgenic mice
tested at the earlier time point was compared directly
to that of transgenic mice tested at the later time point.
Similar comparisons were also performed between
both age groups of non-transgenic animals to deter-
mine the presence of any normal age-related behavioral
changes. Data were analyzed using SPSS Statistics
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19.0 (SPSS Inc). All group differences were deemed
significant at p < 0.05.

RESULTS

Behavior

The hippocampus is a brain region critical for learn-
ing and memory [22–28]. THY-Tau22 mice and WTs
(at 3-4, 6-7, and 9-10 months; n = 12 per group) were
subjected to the Morris water maze, a routinely used
task to assess hippocampal function in mice. The mice
received four training trials per day for five consecutive
days and their time to find the platform, the distance
traveled and the swimming speed were recorded and
analyzed using RM-Anova (day × genotype × age).
At 3-4 months of age, both groups showed good perfor-
mance during the acquisition of the platform position
(p > 0.05; Fig. 1A). Also, 6-7 month THY-Tau22 mice
were indistinguishable from their age-controlled WTs
(p > 0.05; Fig. 1B). At 9-10 months, the WTs quickly
learned to find the platform, whereas the THY-Tau22
mice did not (F1,88 = 187.54; p < 0.001; Fig. 1C). Bon-
ferroni’s post hoc analysis revealed that from day 3
onwards, the 9-10-month-old THY-Tau22 performed
significantly worse (longer path lengths and longer
escape latency) than their age-matched control WTs.
This was also reflected in the probe trial where 9-10
months WT mice preferentially spent more time in the
former target quadrant compared to THY-Tau22 mice
(F1,22 = 31.21, p < 0.001). At the younger ages (3-4
and 6-7 months), both groups spent most of their time
searching in the target quadrant and thus were indis-
tinguishable from each other (both p > 0.05; Fig. 1D,
1E). Also, swim speed in the water maze, as an index
of motor performance, was analyzed. Velocity did not
differ between groups at any of the ages, nor did
mice show any changes in swim speed over time (all
p > 0.05).

During acquisition training, different search strate-
gies can be used and we categorized the different
acquisition trials to one of the three main categories
including spatial, non-spatial, and peripheral looping.
RM-Anova (day × genotype × age) revealed a signif-
icant change in spatial strategy choice (F8,260 = 8.022;
p < 0.001). Both 3-4 (Fig. 2B–E) and 6-7 (Fig. 2C–F)
months old WT and THY-Tau22 mice progres-
sively used more spatial strategies, whereas the 9-10
(Fig. 2D–G) months old THY-Tau22 group did not,
in contrast to their age-matched WT littermates
(F2,65 = 89.949), p < 0.001). 9-10 month old THY-
Tau22 mice appeared to be using more peripheral

looping. Indeed, when comparing the heat plots of
the probe, we observed that young and aged WT
mice mostly searched the area close to the designated
platform position. In contrast, 9-10 month old THY-
Tau22 mice seemed to be circling rather more aimlessly
(Fig. 2 inserts).

Subsequently, mice were subjected to a non-spatial
learning and memory test, the social transmission
of food preference test. While WTs had a signifi-
cant preference for the scented foods their respective
demonstrators ate at all ages tested (t11 = 4.51, p < 0.01
for 3-4 months; t11 = 4.75, p < 0.01 for 6-7 months;
and t11 = 4.05, p < = 0.01 for 9-10 months respec-
tively; Fig. 3A–C), THY-Tau22 mice showed only
a clear preference for the cued food at 3-4 months
(t11 = 3.58, p < 0.01; Fig. 3A), that decreased at 6-
7 months (t11 = 2.22, p < 0.05; Fig. 3B), and totally
vanished at 9-10 months (p > 0.05; Fig. 3C). Direct
comparisons between WT and THY-Tau22 mice at
all three ages revealed no significant differences (all
p > 0.05).

Finally, mice underwent contextual fear condition-
ing. At 3-4 (Fig. 3D) and 6-7 (Fig. 3E) months, both
groups show equal freezing responses in all phases (all
p > 0.05; Fig. 3D and E). At 9-10 months, THY-Tau22
animals showed less conditioned freezing responses
than WTs during the context trial (F1,22 = 8.059,
p < 0.01; Fig. 3F). Both groups displayed similar freez-
ing responses in the following pre-conditional and
conditional stimulus trials (all p > 0.05).

Biochemistry and histology

Histological and biochemical analyses were per-
formed on brain tissue from THY-Tau22 mice and
WT littermates that had been used in the behavioral
experiments. Immunoblot and immunohistochemical
analysis of tau phosphorylation at Ser396 and Thr181
show hyperphosphorylation of tau in the hippocampi
of THY-Tau22 mice detectable from 3 months and
increasing with age (Fig. 4). Also, the levels of total
tau protein increase slightly with age in THY-Tau22
mice (n = 3/age group per genotype).

DISCUSSION

Prior studies involving behavioral endpoints in
mutant tau transgenic mice have revealed cognitive
impairments in some tasks [29–43]. Here, a cross-
sectional design was used to avoid the possible
influence of multiple testing on individual mice. The
aim of the present study was to determine possible
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Fig. 1. Spatial memory impairment appears at 9 months of age in THY-Tau22 mice. WT mice (dark symbols) and THY-Tau22 mice (white
symbols) were tested at different ages with the MWM. At 3-4 months of age, both groups showed good performance during the acquisition of
the task (A) and memory retention (D). WT and THY-Tau22 mice at 6-7 months of age continued to show good performance during learning
(B) and retention (E). At 9 to 10 months of age, WT mice learned the platform location, whereas THY-Tau22 mice showed impairment in the
learning curve during acquisition (C). THY-Tau22 mice of 9-10 months of age spent an almost equal amount of time in each quadrant during the
probe trial, whereas WT mice preferentially spent more time in the quadrant where the platform was previously located (F). Values are expressed
as means ± SEM; asterisks indicate significant difference between THY-Tau22 and WT control values (***p < 0.001; **p < 0.01; *p < 0.05).
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Fig. 2. MWM search strategy. Path length traces were placed in three categories according to their strategy in locating the hidden platform.
Representative traces are shown for spatial, non-spatial, and peripheral looping strategies (A). See detailed definitions in text. Percentage of
trials using a given strategy plotted as a function of genotype and day of platform training. At 3-4 and 6-7 months of age, peripheral looping
strategy use and non-spatial strategy use decreased, where spatial strategy use increased in WT (B-C) and tau mice (E-F). At 9-10 months,
peripheral looping and non-spatial strategy use dropped in WT, coinciding with an augmentation in spatial strategy use (D). However in the aged
THY-Tau22 mice this was not the case indicating that the THY-Tau22 mice from this age group failed in learning the position of the platform
(G). Values are expressed as means. Heatplots of the probe trials (without platform) after 5 consecutive days of acquisition illustrate clear target
preference in 3-4 and 6-7 (data not depicted) and 9-10 months old WT mice. 3-4 and 6-7 months (data not depicted) old THY-Tau22 mice also
show target preference, but this disappears at 9-10 months.
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Fig. 3. Non-spatial memory impairment occurs as early as 6 months of age in THY-Tau22 mice. Social transmission of food preference. Amount
of food eaten in a 2 h interval over the 24 h choice test. While WTs had a significant preference for the scented foods their respective demonstrators
ate all ages tested (A–C), THY-Tau22 mice showed only a clear preference for the cued food at 3-4 months (A), that decreased at 6-7 months
(B), and totally vanished at 9-10 months (C). Contextual fear conditioning. At 3-4 (D) and 6-7 (E) months, both groups show equal freezing
responses in all phases. At 9-10 months, THY-Tau22 animals showed less conditioned freezing responses than WTs during the context trial
(F). Both genotypes displayed similar freezing responses in the following pre-conditional and conditional stimulus trials. Asterisks indicate
significant difference between the two genotypes or significant preference for the cued food in the social transmission of food preference task
(***p < 0.001; **p < 0.01; *p < 0.05).

behavioral impairments in THY-Tau22 transgenic
mice compared to their WT littermates in tests of cog-
nitive function. The age groups examined were 3-4

months, when tau tangles first appear in the transgenic
animals, and 6-7 and 8-9 months to correspond to a
period when tangle load increases dramatically. The
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A

B

Fig. 4. Increase of hippocampal tau hyperphosphorylation in THY-Tau22 mice. Immunoblot analysis of progressive tau hyperphosphorylation
at Ser396 and Thr181 in the hippocampus of THY-Tau22 mice aged 3, 7, and 12 months (A). Immunohistochemical analysis of the progressive
abnormal tau phosphorylation at Ser422 in the CA1 area of the hippocampus at the same ages (B).

results presented here indicated progressive cognitive
impairment in hTau transgenic mice for spatial and
non-spatial learning and memory tasks.

The cognitive processes that underlie the acquisition
and use of spatial information to solve a Morris water
maze task are manifested by the implementation of
spatial strategies such as “swimming directly to it” or
“searching in the right quadrant for the platform” [14,
15, 18, 44, 45]. The use of such spatial strategies in WT
mice was demonstrated to be lacking in some A!PP-
transgenic mouse lines that often employ non-spatial
strategies [16]. In the present study, 9-10 month old
THY-Tau22 mice made little use of spatial strategies,
and rather depended on alternative search strategies
such as chaining and repetitive looping, strategies that
do not require a spatial recall but use circular swim-
ming to eventually bump into the platform. Analogous
effects of tauopathy on spatial learning were observed
for other AD mouse models [42, 46–48].

It was recently shown that A!PP/PS1 mutant mice
harboring amyloid plaques in the brain displayed lower
levels of social interaction [49]. These mice were less
willing to engage in social interaction than their con-

trol WTs, avoiding an unfamiliar stimulus mouse. In
the present study, we investigated olfactory memory in
mice using the social transmission of food preference
task. This phenomenon is understood to depend on the
ability of the observer subject to detect olfactory cues
on the breath of the demonstrator [20, 50]. Mutations
that affect hippocampal function in mice have been
shown to impair performance on this task [51, 52].
We were able to show that while WTs had a signifi-
cant preference for the scented foods their respective
demonstrators ate at all ages tested, tau transgenic mice
developed olfactory memory deficits at 6-7 months.

Cognition requires changes in synaptic plastic-
ity, mediated by cytoarchitectural changes [53].
Because neurofibrillary pathology predominates in
the hippocampus, memory was evaluated using the
hippocampus-dependent Morris water maze and pas-
sive avoidance tests [54, 55]. Plasticity in the
hippocampal region (where our THY-Tau22 mice show
pronounced pathology) is important for contextual
learning, in accordance with the impairments seen in
9-10 month old THY-Tau22 mice in this classical form
of Pavlovian conditioning. 9-10 month old THY-Tau22
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mice failed to remember the stimulus in the passive
avoidance test 24 h after an electric shock, consistent
with results in other mouse lines expressing human tau
[42, 56], and in some amyloid-!-based mouse lines
[18, 57, 58].

Hippocampal synaptic short and long-term plas-
ticity deficits in amyloid and tau mutated mouse
models are well-documented [6, 10, 59–69]. Spatial
learning defects result from defective hippocam-
pal synaptic plasticity, and long-term potentiation
(LTP)-like mechanisms subserve cognition [70].
The miss-sorting of tau from axons to den-
drites could influence mRNA transport required for
synaptic plasticity and tau protein is required for
amyloid-!-induced impairment of hippocampal LTP
[71–73]. Genetic perturbations of "-amino-3-hydroxy-
5-methyl-4-isoxazolepropionatereceptors (AMPARs)
are widely used to dissect molecular mechanisms of
sensory coding, learning, and memory. AMPAR mod-
ification can be obtained by depletion of the GluR-B
subunit or expression of unedited GluR-B, both lead-
ing to increased Ca2+ permeability of AMPARs. Mice
with this functional AMPAR switch, specifically in
forebrain, showed impaired olfactory memory. More-
over, GluR-B depletion in forebrain strongly correlated
with decreased olfactory memory in hippocampus and
cortex [74]. We have recently observed a lack of brain-
derived neurotrophic factor, a factor that plays a critical
role in hippocampus-dependent synaptic plasticity and
memory, -induced synaptic enhancement in 7 month
old THY-Tau22 mice, that was however unrelated to
changes in AMPAR-dependent basal synaptic trans-
mission [75].

We found spatial memory to be impaired only after 9
months of age in hTau mice, whereas non-spatial mem-
ory was affected as early as 6 months. This could be
related to the nature of the learning. The learning in the
water maze is clearly spatial, and also the context phase
of the fear conditioning task is. In contrast, in social
transmission of food learning the learning is mainly
olfactory. Olfactory disorders are noted in a majority of
neurodegenerative diseases [76, 77], but they are often
misjudged and are rarely rated in the clinical setting.
Another factor may well be task difficulty. For exam-
ple, fear conditioning and food preference learning are
easy in the sense that marked learning takes place in
few trials. It may be that there are different thresh-
olds of impairment of brain function for measureable
performance deficit as cognitive ability declines with
age, such that impairment is first detected only on dif-
ficult tasks and only later on easier tasks. Whatever the
reason for the pattern of deficits turns out to be our

results are similar to those seen in demented itself in
that patients are first impaired only on difficult tasks,
but are later also impaired on easier tasks [78].

Altogether, as previously described, and further
confirmed in the present study, hTau mice develop
age-dependent and progressive tau pathology. Behav-
ioral tests assessing learning and memory showed
that young THY-Tau22 mice, with early stages of
tau pathology, did not present cognitive deficits. As
tau accumulation progresses to a moderate stage of tau
pathology, cognitive function also declines. Our results
indicate that tauopathy in the THY-Tau22 mouse
model coincides with distinct deficits in spatial and
non-spatial hippocampus-dependent tasks in an age-
dependent manner, in the absence of motor deficits,
offering opportunities for assessing potential thera-
peutic agents in attenuating or preventing tauopathies
through modulation of tau kinetics.
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